Math 254-2 Exam 9 Solutions

1. Carefully define the term "spanning". Give two examples in \mathbb{R}^{2}.

A set of vectors is spanning if every vector in the vector space can be expressed as a linear combination of vectors from this set. Many examples are possible, e.g. $\{(1,0),(0,1)\},\{(1,0),(0,1),(1,1),(2,3)\}$.
2. Consider the basis $S=\{(1,2),(2,5)\}$ of \mathbb{R}^{2}, and the linear operator $F(x, y)=(2 x-$ $3 y, x-y)$. Find the matrix representation $[F]_{S}$.

We have $P_{E S}=\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)$, so $P_{S E}=P_{E S}^{-1}=\left(\begin{array}{cc}5 & -2 \\ -2 & 1\end{array}\right)$. We calculate $[F]_{E}=$ $\left(\left[F\left(e_{1}\right)\right]_{E}\left[F\left(e_{2}\right)\right]_{E}\right)=\left(\left[\binom{2}{1}\right]_{E}\left[\binom{-3}{-1}\right]_{E}\right)=\left(\begin{array}{c}2 \\ 1 \\ 1 \\ -1\end{array}\right)$ Hence $[F]_{S}=P_{S E}[F]_{E} P_{E S}=$ $\left(\begin{array}{cc}5 & -2 \\ -2 & -1\end{array}\right)\left(\begin{array}{ll}2 & -3 \\ 1 & -1\end{array}\right)\left(\begin{array}{ll}1 & 2 \\ 2 & 5\end{array}\right)=\left(\begin{array}{cc}-18 & -49 \\ 7 & 19\end{array}\right)$
3. Prove that, for any square matrices A, B, if A is similar to B, then B must be similar to A.

Suppose that A is similar to B. Then there is some invertible matrix P with $A=P B P^{-1}$. Multiply this expression on the left by P^{-1}, and on the right by P, to get $P^{-1} A P=P^{-1} P B P^{-1} P=I B I=B$. Hence, there is some invertible matrix $Q=P^{-1}$, such that $B=Q A Q^{-1}$, so B is similar to A.

For the last two questions, set V to be the vector space of functions that have as a basis $S=\{1, \sin \theta, \cos \theta, \sin 5 \theta, \cos 5 \theta\}$.
4. Let D be the differential operator on $V, D(f(\theta))=f^{\prime}(\theta)$. Find the matrix representation $[D]_{S}$.

$$
[D]_{S}=\left([D(1)]_{S}[D(\sin \theta)]_{S}[D(\cos \theta)]_{S}[D(\sin 5 \theta)]_{S}[D(\cos 5 \theta)]_{S}\right)=\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -5 & 0
\end{array}\right) .
$$

5. Let L be the operator on V given by $L(f(\theta))=f^{\prime \prime}(\theta)-2 f(\theta)$. Find the matrix representation $[L]_{S}$.

$$
[L]_{S}=\left([L(1)]_{S}[L(\sin \theta)]_{S}[L(\cos \theta)]_{S}[L(\sin 5 \theta)]_{S}[L(\cos 5 \theta)]_{S}\right)=\left(\begin{array}{ccccc}
-2 & 0 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 & 0 \\
0 & 0 & -3 & 0 & 0 \\
0 & 0 & 0 & -27 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right) .
$$

